Red1 promotes the elimination of meiosis-specific mRNAs in vegetatively growing fission yeast.

نویسندگان

  • Tomoyasu Sugiyama
  • Rie Sugioka-Sugiyama
چکیده

Meiosis-specific mRNAs are transcribed in vegetative fission yeast, and these meiotic mRNAs are selectively removed from mitotic cells to suppress meiosis. This RNA elimination system requires degradation signal sequences called determinant of selective removal (DSR), an RNA-binding protein Mmi1, polyadenylation factors, and the nuclear exosome. However, the detailed mechanism by which meiotic mRNAs are selectively degraded in mitosis but not meiosis is not understood fully. Here we report that Red1, a novel protein, is essential for elimination of meiotic mRNAs from mitotic cells. A red1 deletion results in the accumulation of a large number of meiotic mRNAs in mitotic cells. Red1 interacts with Mmi1, Pla1, the canonical poly(A) polymerase, and Rrp6, a subunit of the nuclear exosome, and promotes the destabilization of DSR-containing mRNAs. Moreover, Red1 forms nuclear bodies in mitotic cells, and these foci are disassembled during meiosis. These results demonstrate that Red1 is involved in DSR-directed RNA decay to prevent ectopic expression of meiotic mRNAs in vegetative cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel factor Iss10 regulates Mmi1-mediated selective elimination of meiotic transcripts

A number of meiosis-specific transcripts are selectively eliminated during the mitotic cell cycle in fission yeast. Mmi1, an RNA-binding protein, plays a crucial role in this selective elimination. Mmi1 recognizes a specific region, namely, the determinant of selective removal (DSR) on meiotic transcripts and induces nuclear exosome-mediated elimination. During meiosis, Mmi1 is sequestered by a...

متن کامل

Importance of polyadenylation in the selective elimination of meiotic mRNAs in growing S. pombe cells

A number of meiosis-specific mRNAs are initially weakly transcribed, but then selectively removed during fission yeast mitotic growth. These mRNAs harbour a region termed DSR (determinant of selective removal), which is recognized by the YTH family RNA-binding protein Mmi1p. Mmi1p directs the destruction of these mRNAs in collaboration with nuclear exosomes. However, detailed molecular mechanis...

متن کامل

The selective elimination of messenger RNA underlies the mitosis–meiosis switch in fission yeast

The cellular programs for meiosis and mitosis must be strictly distinguished but the mechanisms controlling the entry to meiosis remain largely elusive in higher organisms. In contrast, recent analyses in yeast have shed new light on the mechanisms underlying the mitosis-meiosis switch. In this review, the current understanding of these mechanisms in the fission yeast Schizosaccharomyces pombe ...

متن کامل

Rhn1, a Nuclear Protein, Is Required for Suppression of Meiotic mRNAs in Mitotically Dividing Fission Yeast

In the fission yeast Schizosaccharomyces pombe, many meiotic mRNAs are transcribed during mitosis and meiosis and selectively eliminated in mitotic cells. However, this pathway for mRNA decay, called the determinant of selective removal (DSR)-Mmi1 system, targets only some of the numerous meiotic mRNAs that are transcribed in mitotic cells. Here we describe Rhn1, a nuclear protein involved in m...

متن کامل

RNA elimination machinery targeting meiotic mRNAs promotes facultative heterochromatin formation.

Facultative heterochromatin that changes during cellular differentiation coordinates regulated gene expression, but its assembly is poorly understood. Here, we describe facultative heterochromatin islands in fission yeast and show that their formation at meiotic genes requires factors that eliminate meiotic messenger RNAs (mRNAs) during vegetative growth. Blocking production of meiotic mRNA or ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 30 6  شماره 

صفحات  -

تاریخ انتشار 2011